Эпюры внутренних усилий при прямом изгибе.

Ключевые слова: поперечная сила. Внутренний изгибающий момент.

Прямым изгибом называется такой вид простого сопротивления, когда внешние силы приложены перпендикулярно продольной оси бруса (балки) и расположены в одной из главных плоскостей в соответствие с конфигурацией поперечного сечения балки.

Как известно, при прямом изгибе в поперечном сечении возникают два вида внутренних усилий: поперечная сила и внутренний изгибающий момент.

Рассмотрим пример расчетной схемы консольной балки с сосредоточенной силой Р, рис. 1, а, но…

Предварительно рекомендую Вам вспомнить из раздела "Статика" теоретической механики методы расчета реакций в связях на примерах тестов, приведенных в ПРИЛОЖЕНИИ по разделом Т-2.

Прежде всего вычислим реакции в связи на базе уравнений равновесия:

После мысленного рассечения балки нормальным сечением 1-1 рассмотрим равновесие левой отсеченной части (рис.1, б), получим:

Таким образом, на первом участке поперечная сила отрицательная и постоянная, а внутренний изгибающий момент изменяется по линейному закону.

Для правой отсеченной части при рассмотрении ее равновесия результат аналогичен рис.1, в. А именно:

На основании полученных значений строятся эпюры поперечных сил (рис.1, г) и внутренних изгибающих моментов (рис.1, д).

Как следует из построенных эпюр , а в сечении жесткой связи. Именно это сечение и является наиболее опасным в данной расчетной схеме.

Продифференцируем выражение внутреннего изгибающего момента по координате х:

Как видим, после дифференцирования получено выражение для поперечной силы. Случайность это или закономерность? - Закономерность.

Дифференциальные зависимости между внутренними усилиями при изгибе

Рассмотрим расчетную схему балки с произвольной распределенной нагрузкой (рис.2).

Составим уравнение равновесия:

Таким образом, действительно: первая производная от внутреннего изгибающего момента по линейной координате равна поперечной силе в сечении.

Это известное свойство функции и ее первой производной успешно используется при проверке правильности построения эпюр. Так, для расчетной схемы консольной балки (рис.1) эта связь дает следующие проверочные результаты:

и М убывает от 0 до -Pl.
и М є х.

Таким образом, для квалифицированной проверки Вам рекомендуется вспомнить из высшей математики раздел, связанный с вычислением производных функции. Считаю целесообразно решить тесты, приведенные в ПРИЛОЖЕНИИ под разделом Т-3.

Рассмотрим ВТОРОЙ ХАРАКТЕРНЫЙ ПРИМЕР ИЗГИБА двухопорной балки (рис.3).

Очевидно, что опорные реакции RA = RB:

для первого участка (рис.3, б) -

для второго участка (рис.3, в) -

Эпюры внутренних усилий представлены соответственно на рис.3, г и 3, д.

На основе дифференциальной связи Q и М, получим:

Q = const и M также пропорционален х, т.е. изменяется по линейному закону.

Опасным в данном примере является сечение балки в центре пролета:

ТРЕТИЙ ХАРАКТЕРНЫЙ ПРИМЕР

связан с использованием распределенной по длине балки нагрузки (рис.4). Следуя методике, принятой ранее, очевидно равенство опорных реакций: , а для искомого сечения (рис.4, б) выражения для внутренних усилий приобретают вид:

На обеих опорах изгибающий момент отсутствует. Тем не менее опасным сечением балки будет центр пролета при . Действительно, исходя из свойства функции и производной при , внутренний изгибающий момент достигает экстремума. Для нахождения исходной координаты х0 (рис.3 в) в общем случае приравняем выражение поперечной силы к нулю. В итоге получим

После подстановки в выражение изгибающего момента получим:

Таким образом, .

Необходимо отметить, что техника построения эпюр при изгибе наиболее трудно усваивается слушателями. Вам представляется возможность научиться "быстрому" построению эпюр на тесторе-тренажере, приведенном в ПРИЛОЖЕНИИ под грифом Т-4.